Alloy 310 (UNS S31000) is an austenitic stainless steel developed for use in high temperature corrosion resistant applications. The alloy resists oxidation up to 2010°F (1100°C) under mildly cyclic conditions.

Because of its high chromium and moderate nickel content, Alloy 310 is resistant to sulfidation and can also be used in moderately carburizing atmospheres. The more severe carburizing atmospheres of thermal process equipment usually require nickel alloys such as 330 (UNS N08330). Alloy 310 can be utilized in slightly oxidizing, nitriding, cementing and thermal cycling applications, albeit, the maximum service temperature must be reduced. Alloy 310 also finds usage in cryogenic applications with low magnetic permeability and toughness down to -450°F (-268°C).

When heated between 1202–1742°F (650–950°C) the alloy is subject to sigma phase precipitation. A solution annealing treatment at 2012–2102°F (1100–1150°C) will restore a degree of toughness.

310S (UNS S31008) is the low carbon version of the alloy. It is utilized for ease of fabrication. 310H (UNS S31009) is a high carbon modification developed for enhanced creep resistance. In most instances the grain size and carbon content of the plate can meet both the 310S and 310H requirements.

Alloy 310 can be easily welded and processed by standard shop fabrication practices.

Standards

- ASTM A 240
- ASME SA 240
- AMS 5521

Chemical Analysis

Weight % (all values are maximum unless a range is otherwise indicated)

<table>
<thead>
<tr>
<th>Element</th>
<th>310</th>
<th>310S</th>
<th>310H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>24.0 min.–26.0 max.</td>
<td>24.0 min.–26.0 max.</td>
<td>24.0 min.–26.0 max.</td>
</tr>
<tr>
<td>Nickel</td>
<td>19.0 min.–22.0 max.</td>
<td>19.0 min.–22.0 max.</td>
<td>19.0 min.–22.0 max.</td>
</tr>
<tr>
<td>Carbon</td>
<td>0.25</td>
<td>0.08</td>
<td>0.04 min.–0.10 max.</td>
</tr>
<tr>
<td>Manganese</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.045</td>
<td>0.045</td>
<td>0.045</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.030</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>Silicon</td>
<td>1.50</td>
<td>1.50</td>
<td>0.75</td>
</tr>
<tr>
<td>Iron</td>
<td>Balance</td>
<td>Balance</td>
<td>Balance</td>
</tr>
</tbody>
</table>

Physical Properties

- **Density**
 - 0.285 lbs/in³
 - 7.89 g/cm³

- **Specific Heat**
 - 0.12 BTU/lb·°F (32–212°F)
 - 502 J/kg·°K (0–100°C)

- **Electrical Resistivity**
 - 30.7 Microhm·in at 68°F
 - 78.0 Microhm·cm at 20°C

- **Modulus of Elasticity**
 - 28.5 x 10⁶ psi
 - 196 GPa

- **Melting Range**
 - 2470–2555°F
 - 1354–1402°C

- **Thermal Conductivity**
 - 8.0 BTU/hr·ft²·°F
 - 10.8 W/m·°K
Corrosion Resistance

Wet Corrosion

Alloy 310 is not designed for service in wet corrosive environments. The high carbon content, which is present to enhance creep properties, has a detrimental effect on aqueous corrosion resistance. The alloy is prone to intergranular corrosion after long term exposure at high temperatures. However, due to its high chromium content (25%), Alloy 310 is more corrosion resistant than most heat resistant alloys.

High Temperature Corrosion

The high chromium (25%) and silicon (0.6%) content of Alloy 310 make it more resistant to high temperature corrosion in most in-service environments. Operating temperatures are listed below.

- Oxidizing conditions (max sulfur content – 2 g/m³)
 - 1922°F (1050°C) continuous service
 - 2012°F (1100°C) peak temperature
- Oxidizing conditions (max sulfur greater than 2 g/m³)
 - 1742°F (950°C) maximum temperature
- Low oxygen atmosphere (max sulfur content – 2 g/m³)
 - 1832°F (1000°C) maximum temperature
- Nitriding or carburizing atmospheres
 - 1562 – 1742°F (850 – 950°C) maximum

The alloy does not perform as well as Alloy 600 (UNS N06600) or Alloy 800 (UNS N08800) in reducing, nitriding or carburizing atmospheres, but it does outperform most heat resistant stainless steels in these conditions.

Creep Properties

Typical Creep Properties

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Creep Strain (MPa)</th>
<th>Creep Rupture (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
<td>1000 H</td>
</tr>
<tr>
<td>600</td>
<td>1112</td>
<td>120</td>
</tr>
<tr>
<td>700</td>
<td>1292</td>
<td>50</td>
</tr>
<tr>
<td>800</td>
<td>1472</td>
<td>20</td>
</tr>
<tr>
<td>900</td>
<td>1652</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>1832</td>
<td>5</td>
</tr>
</tbody>
</table>

Fabrication Data

Alloy 310 can be easily welded and processed by standard shop fabrication practices.

Hot forming

Heat uniformly at 1742 – 2192°F (950 – 1200°C). After hot forming a final anneal at 1832 – 2101°F (1000 – 1150°C) followed by rapid quenching is recommended.

Cold forming

The alloy is quite ductile and forms in a manner very similar to 316. Cold forming of pieces with long-term exposure to high temperatures is not recommended since the alloy is subject to carbide precipitation and sigma phase precipitants.

Welding

Alloy 310 can be readily welded by most standard processes including TIG, PLASMA, MIG, SMAW, SAW and FCAW.